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1. Black body Radiation
A black body is one that absorbs all the EM radiation (light...) that strikes it. To stay in thermal

equilibrium, it must emit radiation at the same rate as it absorbs it so a black body also radiates

well.

By considering plates in thermal equilibrium it can be shown that the emissive power over the

absorption coefficient must be the same as a function of wavelength, even for plates of different

materials.

It there were differences, there could be a net energy flow from one plate to the other, violating

the equilibrium condition.

A black body is one that absorbs all radiation incident upon it.

ABB = 1

Thus, the black body Emissive power, E(ν, T ), is universal and can be derived from first

principles. A good example of a black body is a cavity with a small hole in it. Any light incident

upon the hole goes into the cavity and is essentially never reflected out since it would have to

undergo a very large number of reflections off walls of the cavity. If we make the walls

absorptive (perhaps by painting them black), the cavity makes a perfect black body.
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There is a simple relation between the energy density in a cavity, u(ν, T ), and the black body

emissive power of a black body which simply comes from an analysis of how much radiation,

traveling at the speed of light, will flow out of a hole in the cavity in one second.

E(ν, T) = c/4 u(ν, T)

Rayleigh and Jeans calculated t he energy density (in EM waves) inside a cavity and hence the

emission spectrum of a black body. Their calculation was based on simple EM theory and

equipartition. It not only did not agree with data; it said that all energy would be instantly

radiated away in high frequency EM radiation. This was called the ultraviolet catastrophe.
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Plank found a formula that fit the data well at both long and short wavelength.
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His formula fit the data so well that he tried to find a way to derive it. In a few months he was

able to do this, by postulating that energy was emitted in quanta with E = hν. Even though there

are a very large number of cavity modes at high frequency, the probability to emit such high

energy quanta vanishes exponentially according to the Boltzmann distribution. Plank thus

suppressed high frequency radiation in the calculation and brought it into agreement with

experiment. Note that Plank’s Black Body formula is the same in the limit that hν << kT but goes

to zero at large ν while the Rayleigh formula goes to infinity.

So the emissive power per unit area is
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We can integrate this over frequency to get the total power radiated per unit area.

( ) =


()


/
= (5.67 × 10−8W/m2/ ◦K4) T4

Stefan Boltzmann Law:
A number of attempts aimed at explaining the origin of the continuous character of this radiation

were carried out. The most serious among such attempts, and which made use of classical

physics, were due to Wilhelm Wien in 1889 and Rayleigh in 1900. In 1879 J. Stefan found
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experimentally that the total intensity (or the total power per unit surface area) radiated by a

glowing object of temperature T is given by

P = aσT4

which is known as the Stefan–Boltzmann law, where 5.67 × 10−8 W/m2/ ◦K4 is the Stefan–

Boltzmann constant, and a is a coefficient which is less than or equal to 1; in the case of a

blackbody a = 1. Then in 1884 Boltzmann provided a theoretical derivation for Stefan’s

experimental law by combining thermodynamics and Maxwell’s theory of electromagnetism.

2. Wien’s energy density distribution
Using thermodynamic arguments, Wien took the Stefan–Boltzmann law and in 1894 he extended

it to obtain the energy density per unit frequency of the emitted blackbody radiation:

(,) = /

where A and β are empirically defined parameters (they can be adjusted to fit the experimental

data). Note: u(ν, T) has the dimensions of an energy per unit volume per unit frequency; its SI

units are Jm-3 Hz-1. Although Wien’s formula fits the high-frequency data remarkably well, it

fails badly at low frequencies.

3. Rayleigh’s energy density distribution
In his 1900 attempt, Rayleigh focused on understanding the nature of the electromagnetic

radiation inside the cavity. He considered the radiation to consist of standing waves having a

temperature T with nodes at the metallic surfaces. These standing waves, he argued, are

equivalent to harmonic oscillators, for they result from the harmonic oscillations of a large

number of electrical charges, electrons,that are present in the walls of the cavity. When the cavity

is in thermal equilibrium, the electromagnetic energy density inside the cavity is equal to the

energy density of the charged particles in the walls of the cavity; the average total energy of the

radiation leaving the cavity can be obtained by multiplying the average energy of the oscillators

by the number of modes (standing waves) of the radiation in the frequency interval ν to ν+dν:

() =
8


where c = 3 ×108 ms-1 is the speed of light; the quantity (8π ν2/c3)dν gives the number of modes

of oscillation per unit volume in the frequency range ν to ν+dν. So the electromagnetic energy

density in the frequency range ν to ν+ dν is given by
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(,) = () <  >=
8


<  >

where <  > is the average energy of the oscillators present on the walls of the cavity (or of the

electromagnetic radiation in that frequency interval); the temperature dependence of u(ν, T) is

buried in <  >.

4. Planck’s energy density distribution
By devising an ingenious scheme—interpolation between Wien’s rule and the Rayleigh–Jeans

rule—Planck succeeded in 1900 in avoiding the ultraviolet catastrophe and proposed an accurate

description of blackbody radiation. In sharp contrast to Rayleigh’s assumption that a standing

wave can exchange any amount (continuum) of energy with matter, Planck considered that the

energy exchange between radiation and matter must be discrete. He then postulated that the

energy of the radiation (of frequency ν) emitted by the oscillating charges (from the walls of the

cavity) must come only in integer multiples of hν:

E = nhν n = 0, 1, 2, 3……..

where h is a universal constant and hν is the energy of a “quantum” of radiation (ν represents the

frequency of the oscillating charge in the cavity’s walls as well as the frequency of the radiation

emitted from the walls, because the frequency of the radiation emitted by an oscillating charged

particle is equal to the frequency of oscillation of the particle itself). That is, the energy of an

oscillator of natural frequency ν (which corresponds to the energy of a charge oscillating with a

frequency ν) must be an integral multiple of hν; note that hν is not the same for all oscillators,

because it depends on the frequency of each oscillator. Classical mechanics, however, puts no

restrictions whatsoever on the frequency, and hence on the energy, an oscillator can have. The

energy of oscillators, such as pendulums, mass–spring systems, and electric oscillators, varies

continuously in terms of the frequency. Equation is known as Planck’s quantization rule for

energy or Planck’s postulate.

So, assuming that the energy of an oscillator is quantized, Planck showed that the correct

thermodynamic relation for the average energy can be obtained by merely replacing the

integration—that corresponds to an energy continuum—by a discrete summation corresponding

to the discreteness of the oscillators’ energies:
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and the energy density per unit frequency of the radiation emitted from the hole of a cavity is
given by

(,) =
8


ℎ

ℎ/ − 1

This is known as Planck’s distribution.

We can rewrite Planck’s energy density to obtain the energy density per unit wavelength.


